Ensino fundamentado em modelagem na formação de futuros professores de ciências: Análise da construção de significados sobre efeito estufa e aquecimento global

Cássia Azevedo Nepomuceno¹, Bárbara Alice Piedade dos Santos, Ana Carolina Gomes Miranda e Nilmara Braga Mozzer

¹cassiaufop@gmail.com

Resumo: Este artigo apresenta e discute o processo de construção de significados relacionados ao efeito estufa e ao aquecimento global, a partir de uma proposta didática fundamentada em modelagem e guiada pelo diagrama modelo de modelagem. Esse processo foi vivenciado por uma turma de futuros professores de Química e Biologia e mediado por uma professora formadora. Os discentes estavam matriculados nos cursos de licenciatura de uma universidade federal localizada no interior de Minas Gerais. Os dados foram coletados a partir da gravação das aulas e de materiais escritos produzidos por um dos grupos de futuros professores. A análise das interações discursivas e dos registros escritos conduz à conclusão de que os elementos do diagrama modelo de modelagem, os subsídios fornecidos no desenvolvimento da proposta didática, bem como os aspectos metodológicos relacionados às ações mediadoras da professora formadora, desempenharam um papel significativo no processo negociação de significados sobre os conhecimentos científicos associados aos fenômenos.

Palavras-chaves: ensino fundamentado em modelagem, formação de professores de ciências, efeito estufa, aquecimento global.

Title: Teaching based on modelling in the science teacher training: Analysis of the construction of meanings about the greenhouse effect and global warming

Abstract: This article presents and discusses the process of constructing meanings related to the greenhouse effect and global warming, based on a didactic proposal based on modelling and guided by the modelling model diagram. This process was experienced by a class of future Chemistry and Biology teachers and mediated by a teacher trainer. The students were enrolled in undergraduate courses at a federal university located in the interior of Minas Gerais. Data were collected from recordings of classes and written materials produced by one of the groups preservice teachers. The analysis of discursive interactions and written records leads to the conclusion that the elements of the modeling model diagram, the subsidies provided in the development of the didactic proposal, as well as the methodological aspects related to the mediating actions of the teacher trainer, played a significant role in the process of negotiating meanings about scientific knowledge associated with phenomena.

Keywords: Teaching based on modelling, science teacher training, greenhouse effect, global warming.

Introdução

O ensino fundamentado na modelagem tem sido amplamente discutido como uma abordagem promissora no ensino de Ciências, a partir da qual os estudantes são engajados em um processo de construção de significados sobre conhecimentos e práticas científicos por meio da elaboração, crítica e revisão de modelos, do qual participam ativamente (Clement, 2008; Gilbert & Justi, 2016; Schwarz, 2009).

Essa abordagem permite aos estudantes refletir sobre a natureza, o alcance e as limitações dos modelos científicos (Justi, 2009), além de desenvolver competências relacionadas à investigação científica, por meio de práticas inerentes à ciência, como simplificação, explicação, argumentação, previsão, representação, e concepção de experimentos ou outros modelos (Gilbert & Justi, 2016). Nesse processo, os estudantes também são incentivados a justificar suas ideias, analisá-las criticamente e legitimar os conhecimentos socialmente construídos na sala de aula (Kelly, 2008). Nele, os questionamentos feitos pelo professor são imprescindíveis para facilitar uma compreensão mais abrangente dos processos vivenciados e da atribuição de significados pelos estudantes (Andrade, 2018).

Apesar das inúmeras potencialidades dessa abordagem, a literatura tem apontado para a escassez de pesquisas sobre modelagem no ensino superior (Mendonça et al., 2022). Além disso, é preocupante a constatação de que o contato com ela durante a formação de professores é limitado, o que compromete a capacidade destes de elaborar e planejar atividades dessa natureza adequadamente (Maia & Justi, 2017), assim como de envolver seus próprios estudantes em práticas científicas (Schwarz, 2009).

Para que os estudantes se engajem em tais práticas é importante que os professores tenham clareza dos objetivos pretendidos em relação à aprendizagem nas aulas de Ciências (Schwarz, 2009). Para tanto, é necessário que, na formação inicial, os professores possam vivenciar propostas de ensino como as fundamentadas na modelagem, evidenciando a contribuição desse processo para a compreensão das ciências, das práticas científicas e da natureza da ciência, bem como para o desenvolvimento do pensamento crítico (Maia & Justi, 2017; Paganini et al., 2014).

Dessa forma, consideramos essencial que os professores sejam inseridos em processos formativos com sua participação ativa em atividades de modelagem para que sejam oportunizados momentos de reflexão acerca do conhecimento que está sendo produzido e avaliado (Mendonça, et. al., 2022), assim como sobre as potencialidades e limitações dessa abordagem (Martins et al., 2020).

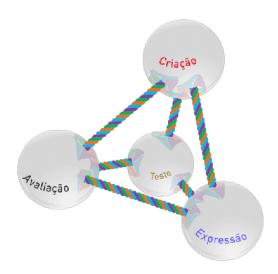
Dentro desse contexto, as atividades de modelagem podem desempenhar um papel significativo na compreensão de problemáticas que os estudantes poderão enfrentar como cidadãos, como aquelas relacionadas ao aquecimento global e às mudanças climáticas, as quais têm mobilizado diversos cientistas ao redor do mundo, como um dos problemas mais significativos na sociedade atual (Jacobi et al., 2011; Junges et al., 2018).

Situações dessa natureza demandam a compreensão de conceitos e ideias científicas que embasem posicionamentos críticos e justificados em torno delas, especialmente se considerarmos, como nos advertem Lambert e seus colaboradores (2011), que a discussão sobre mudanças climáticas muitas vezes é tratada de maneira equivocada nas informações veiculadas pela mídia e em materiais didáticos, que, por exemplo, não diferenciam o efeito estufa e as consequências do seu agravamento.

Nesse sentido, diante da relevância sinalizada de uma educação científica que valorize a participação dos estudantes no processo de aprendizagem e da necessidade de se proporcionar oportunidades de aprendizagem aos futuros professores no ensino e para o ensino a partir da modelagem, buscamos neste trabalho discutir como se deu o processo de elaboração de significados sobre efeito estufa e aquecimento global vivenciado por futuras professoras de Química e Biologia a partir do ensino fundamentado em modelagem. Para isso, nos propusemos a olhar para as interações discursivas estabelecidas durante os ciclos de criação, teste e avaliação dos modelos, para o papel dos recursos e informações disponibilizados e para a mediação da professora formadora durante o processo.

Ensino fundamentado em modelagem

Os modelos desempenham um papel central na produção e validação do conhecimento científico, atuando como ferramentas de pensamento para explorar, descrever e explicar fenômenos naturais e sociais, além de testar hipóteses sobre seu funcionamento (Gilbert, 2004). Nesse sentido, Gilbert e Justi (2016) os descrevem como "artefatos epistêmicos" que vão além de uma mera representação ou imitação da realidade e podem ser expressos de diferentes formas, de acordo com os objetivos específicos e recursos disponíveis.


No ensino de Ciências, as propostas fundamentadas em modelagem podem contribuir para promover a construção de um ambiente argumentativo, no qual os estudantes possam ser capazes de refletir e discutir seus entendimentos sobre os conceitos científicos à medida que os constroem. Para isso, é preciso conceber atividades em que eles possam criar seus próprios modelos, justificar suas proposições e revisá-las ao longo do processo (Justi, 2009). Nessa perspectiva, Justi e Gilbert (2016) propuseram uma versão aprimorada do modelo de modelagem (vide Figura 1) que pode orientar os professores na construção de suas propostas de ensino.

De acordo com estes autores, a representação na forma de um tetraedro regular (todos os vértices com distâncias iguais entre si) enfatiza o entendimento da modelagem como um processo cíclico de construção do conhecimento composta por quatro etapas básicas – que não seguem uma ordem específica para sua ocorrência –, denominadas: *criação; expressão; teste*; e *avaliação*.

De maneira sucinta, conforme descrições de Gilbert e Justi (2016), cada uma das etapas são entendidas da seguinte maneira:

- Criação: Os estudantes constroem seus modelos para uma entidade a ser modelada (por exemplo: um fenômeno, um processo, uma ideia etc.), a

partir de seus conhecimentos prévios, experiências com a entidade a ser modelada aliados a processos de criatividade e raciocínio.

Figura 1 – Representação do Modelo de Modelagem v2 (Gilbert & Justi, 2016, p. 36).

- Expressão: Os modelos só podem ser conhecidos quando os estudantes os expressam de alguma forma (bidimensional, tridimensional, virtual, verbal, gestual, matemático) ou pela combinação delas. Essa escolha de representação acontece de forma subsequente à geração ou reformulação do modelo, pois ao pensar e negociar uma forma de representação isto pode levar a mudanças na própria forma de representar. Simultaneamente, os estudantes também definem como serão representados os significados de detalhes específicos do alvo que eles pretendem enfocar e aqueles que não receberão (ou receberão menor) ênfase.
- Teste: Após a elaboração de um ou mais modelos, cabe aos estudantes testá-lo(s). Os testes podem ser mentais ou experimentais e podem acontecer separadamente ou em conjunto. Caso o modelo não dê conta de explicar a entidade modelada, ele pode ser reformulado até que se tenha sucesso ou, em caso de haver problemas graves de explicação, ele pode ser rejeitado e um novo ser criado.
- Avaliação: Quando o modelo for próspero em seu poder explicativo, os estudantes procuram persuadir os outros (seus colegas e professor) quanto à validade e utilidade dele. No decorrer deste processo, a validade do modelo (abrangência) bem como suas limitações precisam ficar evidentes. Caso as limitações do modelo proposto superem sua capacidade de explicar a entidade modelada, os estudantes retornam ao ciclo de "Modelo de Modelagem" para que o modelo seja modificado.

No tetraedro proposto para representar o processo de modelagem também se observa uma corda composta por quatro fios de cores distintas, entrelaçados, simbolizando os processos cognitivos que estão envolvidos ao longo de todo o processo, a saber: raciocínio analógico; o uso de representações imagéticas; experimentos de pensamento e argumentação (Gilbert & Justi, 2016).

Durante a construção dos modelos, comparações relacionais são desenvolvidas, evidenciando a importância do raciocínio analógico nesse processo. Assim, as analogias podem ser fontes de modelos, embora um modelo não seja uma analogia e nem todas as relações entre o modelo e entidade modelada possam ser representadas por analogias (Mozzer & Justi, 2015, 2018). Além do raciocínio analógico, são realizados os experimentos de pensamento para investigar e compreender os modelos. Esses experimentos permitem estabelecer relações entre informações, bem como a revisão e avaliação dos modelos a partir da imaginação, previsão das características e comportamentos dos objetos, sistemas ou fenômenos modelados e do conhecimento prévio. Outro processo intrínseco à construção de modelos é a representações imagéticas, quais as correspondências entre as interpretações dos elementos de representação interna e aspectos da representação externa, conferindo materialidade e tangibilidade aos modelos (Gilbert & Justi, 2016). A argumentação, por sua vez, é compreendida como um processo de justificar afirmações baseando-se na análise de dados empíricos, teorias científicas e ou conhecimentos prévios. Esse processo de discussão crítica envolve a apresentação e negociação de diferentes pontos de vista para alcançar um consenso sobre a entidade modelada. Assim, as justificativas emergem do diálogo e da análise coletiva, desempenhando um papel fundamental para esclarecer a construção das afirmações (Jiménez-Aleixandre, 2010).

Cabe ressaltar ainda que o processo cíclico de revisão do modelo não ocorre de maneira repentina e disruptiva. Os estudantes elaboram significados próximos aos conceitos científicos para a resolução de um problema, por meio de processos de pensamentos, que envolve a conexão de uma série de ideias anteriores com um sistema novo de informações resultando em novas explicações. O ritmo deste progresso, como mencionado anteriormente, não é linear, nem se dá por puro acréscimo de informações, mas por períodos de trabalho mais revolucionários e outros de menor intensidade (Clement, 2008; Gilbert & Justi, 2016).

Nesse sentido, o papel do professor é essencial na implementação e desenvolvimento do ensino fundamentado em modelagem. Isso exige não apenas conhecimento sobre modelos e modelagem, mas também a capacidade de planejar e desenvolver estratégias pedagógicas coerentes com os processos e práticas da ciência. O professor deve assumir o papel de mediador, promover discussões, identificar dificuldades específicas da turma e oferecer suporte para que os estudantes avancem nas etapas mais complexas do processo. Além disso, cabe ao professor adaptar suas práticas às necessidades dos seus estudantes, assegurando que o ensino baseado em modelagem seja conduzido de forma colaborativa, reflexiva e alinhada aos objetivos do currículo (Justi,2009).

Ademais, para que os estudantes construam ideias cada vez mais coerentes com as científicas é necessário que reconheçam contradições, incoerências e semelhanças entre diferentes ideias. É igualmente importante que sejam capazes de analisar criticamente as ideias de outros, de aceitar e apreciar críticas. Para isso, são necessárias ações docentes voltadas para a escuta das ideias dos estudantes durante todo o ciclo de modelagem; a identificação das que não são compreendidas pelo grupo; e o incentivo à discussão e argumentação das ideias por meio de questionamentos, que auxiliem no

diálogo entre professor e estudante para o desenvolvimento do raciocínio científico (Andrade, 2018; Justi, 2009).

Uma abordagem do aquecimento global no ensino fundamentado em modelagem

Agências e órgãos ambientais ao redor do mundo têm manifestado crescente preocupação com o aquecimento global. Desde a instituição do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) em 1988 e a ECO 92, um conjunto diversificado de tratados e protocolos têm sido assinado pelos líderes mundiais, visando garantir reduções nas emissões de gases de efeito estufa.

Entretanto, no meio científico, ainda persistem dissensos quanto às causas do aquecimento global. Enquanto alguns estudiosos defendem que esse aumento na temperatura do planeta é primordialmente resultado do aumento da concentração de CO₂ (dióxido de carbono) na atmosfera terrestre, decorrente de atividades humanas, outros sustentam tratar-se de um fenômeno natural (Ciclos de Milankovitch) de autorregulação do planeta (Casagrande et al., 2011; Cruz et al., 2014; Gonçalves et al., 2018; Jacobi et al., 2011).

Diante das evidências fornecidas pelos inúmeros modelos climáticos globais que apontam para um acréscimo na temperatura média do planeta de pelo menos 1,2°C desde a Revolução Industrial, com consequente derretimento das geleiras e mudanças na dinâmica dos ecossistemas, impulsionando até mesmo as primeiras extinções de espécies inteiras (IPCC, 2023; Jacobi et al., 2011; Xavier & Kerr, 2004), é necessário considerar os apontamentos que mostram como as mudanças climáticas recentes observadas apresentam uma imagem consistente de um planeta em processo de aquecimento.

Além disso, o consenso científico sobre o clima evoluiu ao longo dos relatórios produzidos pelo IPCC. Pela primeira vez, no sexto relatório divulgado em 2021, foi apontado explicitamente que "a influência humana, tanto na atmosfera quanto nos oceanos e nos componentes terrestres do sistema climático, em conjunto, é avaliada como inequívoca" (IPCC, 2021, p. 63, tradução nossa). Dessa forma, nos apoiamos nas ideias de que as fontes naturais de CO₂ são insuficientes para um aumento da temperatura superficial terrestre, com o propósito de respaldar a concepção de que a ação antrópica é a principal responsável pela intensificação do efeito estufa (aquecimento global).

Isso porque, o efeito estufa é um fenômeno natural e crucial para a manutenção da biosfera, no qual gases do efeito estufa absorvem grande parte da radiação infravermelha emitida pela superfície da Terra e mantém a temperatura média da superfície em torno de 15° C (Casagrande et al., 2011; Junges et al., 2018). Os principais gases de ocorrência natural envolvidos nesse processo são o vapor d'água, dióxido de carbono, metano (CH₄) e óxido nitroso (N₂O). Todavia, a preocupação decorre dos riscos associados à intensificação do CO_2 que, embora não seja o principal gás estufa em termos de proporção em relação aos demais, tem sua emissão consideravelmente aumentada pela queima de combustíveis fósseis, absorve energia nos comprimentos de onda emitidos pela Terra e não é condensável (como o

vapor d'água), permanecendo na atmosfera por centenas de anos (Junges et al., 2018; Xavier & Kerr, 2004).

Assim, a alta concentração desses gases causa um desequilíbrio no balanço de energia do planeta. Eles absorvem radiação infravermelha emitida pela Terra e a reemitem em todas as direções, fazendo com que parte dessa radiação permaneça na baixa atmosfera. Isso ocorre porque a molécula de CO₂, assim como qualquer outra molécula, possui seus próprios modos de vibração; isto é, os átomos que compõem a molécula vibram em torno de uma posição média de diferentes formas (o que depende da massa desses átomos e das forças elétricas que os ligam), (Junges et al., 2018; Tolentino & Rocha-Filho, 1998).

Quando a molécula de CO₂ vibra nos modos de estiramento assimétrico e deformação angular, ocorre uma mudança periódica em seu momento de dipolo, permitindo a absorção de radiação na faixa do infravermelho. Após absorver a radiação, a molécula de CO₂ a reemite na mesma frequência, distribuindo-a em todas as direções. Uma parte dessa energia retorna para a superfície terrestre, enquanto outra é liberada para o espaço. Esse processo intensifica o desequilíbrio energético do planeta, fazendo com que a Terra absorva mais energia do que consegue emitir. Como resposta, o planeta se aquece, elevando progressivamente sua temperatura média global — fenômeno conhecido como aquecimento global. Esse aumento de temperatura é necessário para que a Terra consiga emitir maior quantidade de radiação infravermelha ao espaço e, assim, tentar restabelecer o equilíbrio energético (Junges et al., 2018; Tolentino & Rocha-Filho, 1998).

Conforme destacado por Lima (2013), os efeitos do aquecimento global, previamente considerados como uma preocupação para o futuro, atualmente estão sendo observados em uma série de eventos climáticos extremos que ocorrem em várias regiões do mundo. Diante desse cenário, a compreensão do efeito estufa torna-se essencial no ensino de Ciências, uma vez que possibilita a reflexão e o debate em torno dos modelos que explicam as consequências das ações antropogênicas nos processos naturais da Terra.

Isso ajuda a esclarecer conceitos equivocados que, por vezes, são provenientes das mídias e dos materiais didáticos, como aqueles que não distinguem o efeito estufa natural do efeito estufa intensificado (aquecimento global) ou ideias desinformadas que negligenciam as relações entre questões ambientais e a sociedade (Lima, 2013). Isso se agrava se considerarmos que esses meios são as principais fontes de conhecimento ambiental dos professores (e dos estudantes) (Jacobi et al., 2011; Lambert et al., 2011).

Considerando a complexidade das ideias subjacentes à compreensão da absorção de radiação pelos gases do efeito estufa e suas implicações, bem como da carência de investigações, intervenções e abordagens metodológicas inovadoras e profundas discussões sobre o tema (Gonçalves et al., 2018; Jacobi et al., 2011), uma proposta didática baseada no ensino fundamentado em modelagem foi elaborada com o objetivo de promover um ambiente dialógico de aprendizagem que favorecesse a elaboração de significados sobre efeito estufa e aquecimento global pelos futuros professores de Ciências. Como Putnam e Borko (2000), consideramos que proporcionar oportunidades de aprendizagens dessa natureza é uma condição necessária (embora não o suficiente) para sustentar a promoção, em suas futuras salas

de aula de Ciências, de ambientes dialógicos, para o desenvolvimento de práticas científicas e epistêmicas e de pensamento crítico pelos estudantes.

Metodologia

A abordagem metodológica nesta pesquisa pode ser considerada de natureza qualitativa devido ao caráter descritivo e investigativo das questões relacionadas ao processo de ensino-aprendizagem (Lüdke & André, 2013). Isso porque, objetivou-se investigar como futuras professoras de Química e Biologia construíram conhecimentos acerca do efeito estufa e do aquecimento global a partir da modelagem.

Para atingir esse objetivo, foram empregadas estratégias que visavam: (i) coletar dados com descrições detalhadas, a fim de obter maior número possível de elementos presentes na situação estudada; (ii) priorizar o processo ao invés do produto, ou seja, descrever e analisar como, por meio das interações dialógicas estabelecidas durante as aulas de desenvolvimento da proposta, as futuras professoras de Química e Biologia propunham, testavam, avaliavam e reformulavam suas ideias a partir dos modelos criados, investigando também o papel dos recursos e informações disponibilizados e a influência da professora formadora ao longo dessas interações e; (iii) discutir algumas das implicações da utilização dessa abordagem no contexto da formação inicial de professores de Ciências.

A proposta didática foi elaborada para a disciplina de Metodologia de Ensino de Química I de uma Universidade Federal localizada no estado de Minas Gerais, embasada nos trabalhos de Junges et al. (2018), que discute os principais conceitos científicos para a compreensão dos fenômenos do efeito estufa e do aquecimento global; e de Gilbert e Justi (2016), que aborda os pressupostos e fundamentos do ensino fundamentado em modelagem. A finalidade era proporcionar um contexto para a vivência pelos futuros professores de Química e Biologia de situações dialógicas e colaborativas de proposição, avaliação e reformulação de modelos explicativos para esses fenômenos.

Antes do desenvolvimento da proposta, a professora da turma, uma das autoras deste trabalho, a qual tem experiência no ensino de Ciências fundamentado em modelagem, conduziu discussões iniciais sobre o papel dos modelos na ciência e no ensino de Ciências e apresentou aos futuros professores o diagrama "Modelo de Modelagem" de Gilbert e Justi (2016). Todos os estudantes da turma consentiram com as gravações e assinaram o TCLE (Termo de Consentimento Livre e Esclarecido) aprovado² pelo Comitê de Ética da mesma universidade. O Termo foi encaminhado pela professora da disciplina para o e-mail institucional dos estudantes, os quais assinaram digitalmente e reenviaram por e-mail.

A turma era composta por oito futuros professores de Química e Biologia que foram divididos, pela professora, em dois grupos de quatro estudantes cada. Ambos os grupos contavam com futuros professores de Química e Biologia. No que concerne ao desenvolvimento da proposta, foram utilizadas 10 aulas geminadas de 50 minutos cada. Em decorrência da pandemia de Covid-19, a disciplina aconteceu de forma remota por meio da plataforma *Google Meet*. Para todas as aulas foram criadas salas virtuais que

englobavam toda a turma, além de salas virtuais destinadas às discussões entre os grupos.

As dinâmicas de todas as salas foram gravadas pela plataforma. Ademais, todos os modelos criados pelos grupos e as respostas redigidas para as questões das folhas de atividade foram enviadas por e-mail para a professora da turma e fizeram parte do corpus de dados desta pesquisa.

Tendo em vista que o foco deste trabalho se concentra no desenvolvimento das ideias dos futuros professores, buscamos analisar todos os modelos construídos e todas as informações contidas nas gravações que davam suporte a eles. Para isso, todas as gravações foram assistidas na íntegra e houve transcrição apenas do processo dialógico entre os futuros professores e a professora durante as aulas, não se estendendo à transcrição das salas virtuais destinadas às discussões dos pequenos grupos. Tal escolha se deve à escassez de diálogos nessas salas virtuais, possivelmente atribuído ao fato deles se comunicarem por outros meios, como o WhatsApp, por exemplo, apesar de terem sido instruídos pela professora a utilizarem a sala para essa finalidade, após receberem o *link*.

Para este trabalho, selecionamos um dos grupos da turma o qual era composto por quatro estudantes do sexo feminino. Três delas eram estudantes do quinto período do curso de Química Licenciatura e uma do quinto período de Biologia Licenciatura. Esta também tinha uma formação concluída no curso de Bacharelado em Biologia pela mesma universidade. A escolha do grupo em questão se deu pela maior participação e maior exposição de dúvidas, o que gerou muitos momentos discursivos com a professora e demais colegas e, assim, ficaram explícitas as hipóteses, ideias e dúvidas em discussão, cujo acesso seria fundamental diante do nosso objetivo de investigar, por meio das interações discursivas estabelecidas, os elementos do processo de modelagem que contribuíram para a construção de compreensões pelos futuros professores.

Para o processo de transcrição, a fim de preservar a identidade dos sujeitos pesquisados, foram utilizadas abreviações. Nas falas dos futuros professores, o código "E1/G1", por exemplo, indica o estudante "E1" pertencente ao grupo "G1". Esse padrão foi adotado para simplificar as falas dos participantes ao longo de todo o texto. Além disso, antes do código de cada estudante, consta o número correspondente ao seu respectivo turno de fala, categorizado de acordo com a ordem de pronunciamento ao longo das 10 aulas.

Na transcrição das falas dos futuros professores e da professora formadora, que foram mantidas sem correções, alguns sinais apontados por Carvalho (2006) foram utilizados, tais como: reticências, para indicar longas pausas durante a fala; reticências entre parênteses, empregadas para indicar cortes que removem informações secundárias, mantendo apenas as ideias principais; parênteses duplos, para registrar comentários das pesquisadoras; dois pontos, para falas em que houve prolongamento de vogais ou consoantes, por exemplo "é::"; e palavras em caixa alta, utilizadas para representar as mudanças na entonação de voz dos interlocutores.

A partir das transcrições das aulas, iniciou-se o processo de análise com a seleção de trechos das interações ou das falas nos quais foram identificados indícios de mudanças nas ideias das futuras professoras. Consideramos que

ocorreram mudanças quando por meio de questionamentos ou novas atividades, as futuras professoras percebiam que seus modelos não eram capazes de responder a determinados aspectos sobre os fenômenos do efeito estufa e do aquecimento global. Essas inconsistências, por sua vez, motivavam discussões e geravam novas reformulações durante o processo de modelagem.

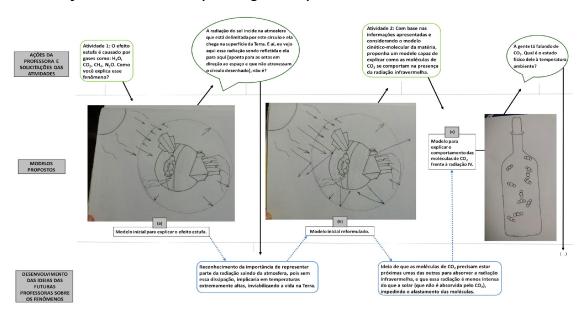
Com o objetivo de fornecer uma visão geral da construção de significados pelas futuras professoras, elaboramos, baseadas na proposta de Clement (2008) e Andrade (2018), esquemas de representação, apresentados na seção seguinte (figuras 2 a 4), destacando o desenvolvimento dos modelos propostos.

Nos esquemas, da esquerda para a direita, na parte superior, destacamos as solicitações presentes nas atividades (representadas na cor verde claro) e as principais ações da professora (representadas na cor verde escuro) visando obter esclarecimentos, incentivar a revisão de ideias/modelos e a fundamentação dos argumentos das futuras professoras que contribuíram para a evolução do conhecimento conceitual identificada a partir do modelo e das ideias expressas. Na parte inferior, apresentamos o desenvolvimento das ideias das futuras professoras sobre os fenômenos do efeito estufa e aquecimento global (representadas na cor azul). Na parte central, buscamos mostrar os modelos propostos (expressos nos modos verbal e bidimensional) ao longo do desenvolvimento das atividades, representados com as respectivas legendas (na cor preta).

Os esquemas também incluem setas que representam as indagações da professora ou solicitações das atividades e a proposição e reformulação dos modelos após as discussões com a turma. As setas cheias, de cor preta, sinalizam o processo de questionamentos e suas consequências na expressão/reformulação dos modelos. Já as setas pontilhadas, de cor azul, evidenciam aspectos específicos de modificações na elaboração de significados pelas futuras professoras sobre os fenômenos.

É importante ressaltar que, embora os esquemas em questão tenham sido construídos a partir de uma representação linear do desenvolvimento das ideias das futuras professoras ao longo da proposta, esse processo não ocorreu de forma linear. Elas frequentemente revisaram, expressaram, testaram e avaliaram seus modelos, mas nem sempre isso levava a uma compreensão mais aprofundada de determinado aspecto. Além disso, como apontam Gilbert e Justi (2016), a modelagem é um processo cíclico complexo e dinâmico, no qual há momentos em que uma ação demanda a ocorrência de outra ação específica, mas que nem sempre as etapas ocorrem naquela ordem sequencial.

Por fim, nesta seção, enfatizamos todas as etapas do processo de modelagem, conforme previamente descrito no quadro 1. Já nos resultados, apresentamos uma seleção do desenvolvimento da proposta, apropriada à extensão de um artigo, permitindo uma análise mais minuciosa de aspectos que consideramos essenciais.


Dessa maneira, optamos por uma discussão mais exaustiva das atividades 2 e 3, sem desconsiderar todo o processo, uma vez que, faremos uma breve discussão das atividades 1 e 4 e todos os modelos criados são apresentados nos esquemas. Tal abordagem se justifica pelo fato de que essas atividades

demonstraram-se cruciais para os resultados finais e contribuíram significativamente para a obtenção de dados importantes. Isso porque, por meio das interações dialógicas nessas atividades, foi possível notar que houve mais momentos de criação, crítica e revisão dos modelos entre as futuras professoras e a professora formadora, na tentativa de explicar em nível submicroscópico os aspectos relacionados à absorção de radiação infravermelha pelo CO₂, bem como, o equilíbrio das taxas de emissão e absorção de radiação, além do aumento na emissão de energia pela Terra, o que contribuiu para o entendimento das distinções entre efeito estufa e aquecimento global. Portanto, nossa análise estará centrada nas atividades 2 e 3, sem desconsiderar a relevância das demais atividades para o processo de modelagem, que foram cuidadosamente realizadas para assegurar a qualidade e a confiabilidade dos resultados obtidos.

Resultados e discussões

Apresentamos o esquema com os modelos construídos pelas futuras professoras ao longo de todo o processo de desenvolvimento da Proposta Didática, que sintetiza suas principais ideias e o desenvolvimento delas diante do auxílio dos integrantes do grupo e da professora formadora, durante o processo de modelagem.

Na primeira atividade da SD, voltada para a elaboração de modelos explicativos para o efeito estufa, as futuras professoras destacaram o fenômeno como natural e essencial à vida no planeta, enfatizando a importância dos gases estufa para a viabilidade de vida na Terra. No entanto, durante a discussão com a professora, reconheceram limitações em seu modelo, especialmente relacionadas à falta de representação da dissipação de radiação da atmosfera (vide figura 2a).

Figura 2 – Esquema da elaboração de significados pelas futuras professoras durante a atividade de modelagem sobre efeito estufa e aquecimento global.

Além disso, salientaram que a retenção total da radiação na atmosfera levaria a temperaturas excessivamente elevadas, o que, por sua vez, impossibilitaria a existência de vida no planeta. À luz dessas discussões, as

futuras professoras reelaboraram seu modelo (vide Figura 2b), adicionando setas para indicar que parte da radiação retorna ao espaço, enquanto uma outra parcela é retida pelos gases do efeito estufa e, consequentemente, retorna à superfície terrestre.

Durante o segundo dia de desenvolvimento da Proposta, as futuras professoras elaboraram um novo modelo (vide Figura 2c) e relataram as discussões realizadas em grupo após a leitura da parte 1 da atividade 2 e a exibição do vídeo do experimento sobre o efeito estufa. Uma das futuras professoras do grupo 1 explicou que chegaram a pensar que as moléculas de CO₂ ficariam mais agitadas e, consequentemente, mais espaçadas após a incidência da radiacão infravermelha sobre elas. No entanto, ponderaram que a proximidade entre as moléculas é fundamental para garantir a retenção da radiação e que, portanto, as moléculas não poderiam ficar tão afastadas "fisicamente". Para justificar essa ideia, elas propuseram duas explicações diferentes. A primeira, sugeria que as moléculas não ficariam nem tão distantes umas das outras e nem tão próximas. Já a segunda, tinha relação com a primeira e supunha que a radiação infravermelha seria menos intensa que a radiação solar, de modo que, ao incidir sobre as moléculas, não as afastaria tanto a ponto de permitir a passagem de radiação, como ocorre com a radiação solar que não é absorvida pelas moléculas de CO₂ e chega até a superfície terrestre.

Dada a natureza da solicitação presente na atividade, que demandava a consideração da Teoria Cinético-molecular, pode-se perceber pela figura 2c que, as futuras professoras do G1 passaram a contemplar aspectos do nível submicroscópico de representação em seu modelo em relação a influência do ${\rm CO_2}$ na retenção de radiação. Isso difere dos primeiros modelos que abordavam o efeito estufa apenas considerando as trajetórias da radiação, embora ainda não tivessem diferenciado entre os tipos de radiação provenientes do Sol e os emitidos pela Terra.

Posteriormente à apresentação dos modelos pelos grupos, a professora incentivou a turma a questionar e solicitar esclarecimentos adicionais sobre os modelos propostos. Um dos apontamentos feitos pelo grupo 2, sobre o modelo do grupo 1 é ilustrado na citação a seguir:

117- E3/G2: (...) parece que o átomo de oxigênio tá fazendo interação com outro de oxigênio e aí depois fazendo com um de carbono e aqui, a de baixo ((refere-se a outro desenho de molécula presente no modelo)), por exemplo, de oxigênio só fazendo com outra de carbono.

118- Professora: Então a posição ali da interação tá meio inconsistente para você? (...)

119- E2/G1: Tá torto né?!

120- Professora: Então era para ser oxigênio com carbono, né?

121- E2/G1: É. Era pra ser o oxigênio com carbono, né, porque eu acho que seria assim. Na interação intermolecular o oxigênio interage com o carbono... eu não tenho certeza, mas eu acho que seria isso, só que foi erro de traço, porque na verdade era pra colocar interação com carbono. Tanto que dá pra ver que tá meio no meio, assim, né, entre o oxigênio e o carbono aquele tracinho. Mas era pra estar no carbono.

Esse movimento de apreciação crítica dos modelos dos colegas, suscitado pela professora, desencadeou uma valiosa reflexão crítica sobre a representação dos aspectos químicos e a importância de fornecer detalhes mais precisos sobre os elementos que estão sendo modelados. Este processo foi fundamental para a compreensão mais abrangente e aprofundada de alguns dos fenômenos discutidos na atividade (Gilbert & Justi, 2016; Paganini et al., 2014).

Ainda durante os testes dos modelos apresentados nessa aula, E1/G1 retomou a concepção anteriormente apresentada por seu grupo, demonstrando, em falas como as apresentadas a seguir, que ainda persistiam incertezas quanto ao comportamento das partículas de CO_2 perante a radiação infravermelha:

204- Professora: Em geral afastadas ((se referindo às moléculas de um gás, como o CO_2)), então será que é a proximidade ou afastamento que permite essa retenção, essa absorção do infravermelho?

205- E1/G1: Você perguntando assim, aí parece que, tipo, não. Não tem nada a ver, mas aí ainda fica pra mim que tem que ter alguma coisa, porque o infravermelho, ele vai entrar em contato com ele ((refere-se à molécula de CO_2)) lá. Então, ele vai absorver ou ele vai deixar passar.

206- Professora: Alguma coisa vai ter mesmo. Alguma coisa tem que ter e é isso que vocês não pararam pra pensar (...) só que agora é pra gente pensar é COMO. Como é que essa radiação, COMO é que o CO_2 se comporta diante dessa radiação pra que ele consiga absorver?

209- E4/G1: Dá a resposta, professora?! Tem alguma coisa a ver com a opacidade?

210- Professora: (...) não é jogo de adivinhação. Então, a proposta mais coerente de explicação, que dê conta de explicar mais coisas, essa vai ser a que a gente vai ter como consensual aqui desse grupo de sala de aula (...) uma forma de raciocinar se essa opacidade, que na verdade é uma linguagem metafórica (...) é só pra falar que ele não deixa passar, mas o que acontece que ele não deixa passar? (...) o modelo de vocês tem que dar conta de explicar por que o CO_2 não deixa passar, entenderam?

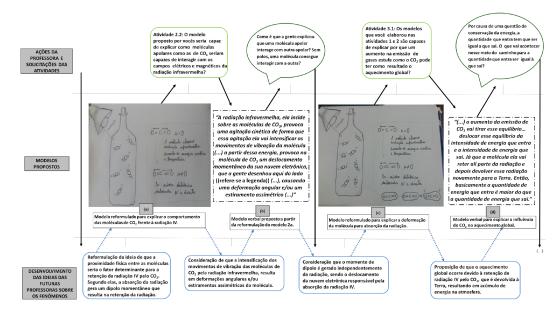
Quando E1/G1 expressou novamente (no turno 205) dúvidas acerca do mecanismo pelo qual as moléculas de CO₂ "barram" a radiação, a futura professora nos forneceu indícios da dificuldade de superar a noção limitada de que apenas a proximidade física entre as partículas do gás seria capaz de produzir esse efeito. Tal limitação pode ser vista como uma barreira, ou seja, um obstáculo epistemológico⁴ que impediu o progresso das futuras professoras em suas explicações para o fenômeno em questão. Por outro lado, a linha de raciocínio que E1/G1 foi tecendo ao longo dessa discussão fornece evidências de que a nova proposição apresentada no turno 205 ("ele vai absorver ou ele vai deixar passar") não é uma ideia repentina, mas sim uma construção gradual que ocorre por meio da conexão entre as ideias emergentes e as anteriores, modificando, assim, os processos de raciocínio realizados previamente (Clement, 2008).

Naquele momento, a ênfase da professora para que buscassem explicar como o CO₂ é capaz de absorver a radiação, juntamente ao esclarecimento

de que o termo "opaco" é metafórico, levou as futuras professoras a compreenderem que o modelo proposto carecia de reformulações que dessem conta de explicar o que poderia acontecer, visto que a proximidade não era uma condição plausível para partículas de um gás. Essa intervenção da professora, destacou também que, no processo de modelagem, as ideias e os significados são construídos nas discussões com os pares e com ela, enfatizando, assim, a natureza social da produção e validação das compreensões sobre o conhecimento científico, no âmbito escolar.

Em outras palavras, essa ação da professora destacou que a construção do conhecimento ocorre dentro de um contexto social e é moldado por práticas coletivas consensualmente aceitas por aqueles membros (Kelly, 2008). Neste sentido, ao ressaltar que o modelo aceito seria aquele que desse conta de explicar mais aspectos do fenômeno estudado, a professora procurou deixar claro que não existe um único modelo correto e que copie a realidade, mas um modelo explicativo considerado plausível pelo grupo (Gilbert & Justi, 2016; Mozzer & Justi, 2018).

A professora iniciou o terceiro dia de desenvolvimento da Proposta solicitando que cada um dos grupos apresentasse as reformulações que haviam sido propostas para a parte 1 da atividade 2 após as discussões da última aula. As ideias do grupo 1 são resumidas na seguinte fala de E1/G1:


222- E1/G1: (...) A gente chegou à conclusão de que, quando absorve, agita demais a molécula e nela agitar muito, essa vibração que ela vai ter, vai ter uma:: tipo um deslocamento da:: nuvem de elétrons, por causa dessa vibração e aí, nesse momento... essa energia fica por um tempo retida. E como a molécula fica instável, ela tende a liberar essa energia de novo e aí é onde a energia volta pra Terra.

Por meio dessa fala, E1/G1 deixa claro que as futuras professoras passaram a ponderar que, quando a radiação infravermelha incide sobre as moléculas de CO₂, esta é absorvida, gerando um dipolo momentâneo e retendo a radiação, a qual é posteriormente liberada de volta à superfície terrestre para que as moléculas retornem à estabilidade. Isto é, de acordo com elas, o dipolo momentâneo só é gerado após a absorção da radiação pela molécula (vide Figura 3a).

Posteriormente, a professora solicitou que os grupos se reunissem e analisassem as novas informações, presentes na segunda parte da atividade 2, em conjunto com seus modelos atuais. Conforme a prática habitual, após discutirem, cada grupo apresentou o modelo para toda a turma e explicou as reformulações propostas. No caso do grupo 1, este apresentou o modelo verbal da Figura 3b com uma explicação semelhante à apresentada por E1/G1 no turno de fala 222, com exceção da designação de termos para o deslocamento gerado.

Dessa vez, as futuras professoras afirmaram que, a incidência de radiação infravermelha intensifica os movimentos de vibração das moléculas de CO_2 e que o aumento da vibração, causado pela radiação, provoca o deslocamento momentâneo da nuvem eletrônica, modificando a conformação da molécula de CO_2 resultando em "uma deformação angular e/ou um estiramento assimétrico". As informações sobre os tipos de

vibração possíveis para a molécula de CO₂ foram fornecidas no enunciado da atividade.

Figura 3 – Esquema da elaboração de significados pelas futuras professoras durante a atividade de modelagem sobre efeito estufa e aquecimento global (continuação).

Ambos os grupos apresentaram a ideia de que a conformação das moléculas de CO_2 era alterada pela absorção da radiação, embora houvesse diferenças entre os modelos propostos. Diante disso, a professora concentrou a discussão nas propriedades das moléculas apolares. A seguir, destacamos um trecho desse diálogo em que a professora, na tentativa de auxiliar o debate, desenhou duas representações para a molécula de CO_2 : uma com a nuvem eletrônica homogeneamente distribuída e outra com uma distribuição distorcida das cargas, indicando a formação de um momento de dipolo.

268- Professora: Como é que a gente explicou que uma molécula apolar interage com outra apolar? Sem polos, uma molécula consegue interagir com a outra? Essa é a primeira que... ((estudante liga o microfone)) pode falar, E2/G1.

269- E2/G1: Uma molécula vai causar na outra um dipolo e:: vai induzir um dipolo momentâneo na outra...

270- Professora: Que sai induzindo em outras, não é?

271- E2/G1: Sim. Exatamente. Em cadeia.

Diante desse conjunto de indagações a respeito de como ocorrem as interações entre moléculas apolares e como a distribuição de cargas influencia na geometria dessas moléculas, a professora possibilitou a ressignificação pelas futuras professoras de que, quando se trata de várias moléculas apolares, um dipolo momentâneo será gerado e isso independe da presença de radiação. Nesse processo, a ação da professora de desenhar a molécula de CO₂, enfatizando a distribuição de cargas nela, favoreceu o entendimento da relação entre os códigos de representação presentes no próprio modelo do grupo e o processo de interação eletrostática entre as

moléculas (Paganini et al., 2014). Esse entendimento foi evidenciado no aprimoramento do modelo (vide Figura 2c) que foi apresentado no início do quarto dia, traduzido na fala de uma das futuras professoras do grupo:

327- E4/G1: Então... antes da aula passada... a gente tinha mandado o desenho com a garrafa, a radiação incidindo nas moléculas, as aspas indicando essa agitação e a gente tinha especulado, então, que haveria uma deformação na conformação da molécula. Mas aí, conforme a gente foi discutindo na aula é:: quer dizer... a gente então especulou essa deformação, só que a gente tava atribuindo essa deformação a:: radiação. Então pra gente a radiação iria incidir, certo?! E com isso... por conta disso e da agitação dessas moléculas haveria então, uma deformação na conformação das moléculas. Só que aí com a discussão, durante a aula passada, a gente viu que não, né?! Que essa deformação ela já acontece, como a professora tava falando e provocando a gente na aula passada... que tem a ver então com o momento de dipolo ali que seria gerado... é:: um momento de dipolo... momentâneo, então geraria uma polaridade momentânea. Só que isso aconteceria independentemente da radiação. (...) É:: tem a radiação incidindo na garrafa, as moléculas estariam vibrando... a molécula absorveria a radiação infravermelha, então isso geraria um aumento da energia e, consequentemente, um aumento da temperatura. Só que a gente entendeu na aula passada que esse momento de dipolo... esse dipolo momentâneo, ele existe independente da radiação. E é esse dipolo momentâneo que faz com que a radiação seja absorvida. É isso galera?

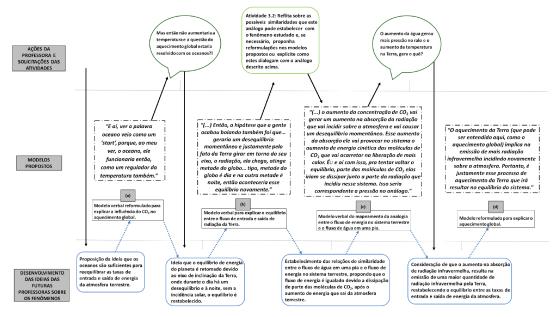
Fica claro na fala de E4/G1, o entendimento de seu grupo de que as moléculas só interagem com os campos eletromagnéticos da radiação infravermelha devido aos dipolos momentaneamente estabelecidos nas moléculas. Isto é, quando a radiação infravermelha incide na molécula e sua frequência é compatível com os modos normais de vibração, a molécula de CO₂ pode absorver a radiação (Junges et al, 2018).

Além disso, apesar de considerarem que existe mais de uma conformação possível para a molécula de CO_2 (como pode ser observado na figura 3c, na qual as futuras professoras representaram algumas moléculas de CO_2 angulares dentro da garrafa), a legenda associada ao desenho restringiu-se a ilustrar o deslocamento da nuvem eletrônica considerando somente moléculas lineares de CO_2 . Podemos afirmar que essa foi uma limitação da representação e não da ideia consensual do grupo. De fato, essa ideia pode ser identificada na fala de E4/G1, apresentada a seguir, que ocorreu, em determinado momento da mesma aula, quando a professora questionou os futuros professores sobre as diferenças que eles notavam entre os modelos propostos pelos dois grupos.

356- E4/G1: É:: não sei, mas pelo que o E4/G2 acabou de falar, eu acho que eles estão considerando só o estiramento, então acho que essa é uma diferença. A gente tá considerando as duas conformações, né.

Ainda com relação ao modelo reformulado do grupo 1, a professora questionou as futuras professoras sobre como elas representaram os polos positivos e negativos da molécula de CO_2 na legenda criada no modelo, os quais foram identificados pela letra grega delta (δ). Pelas falas delas, podemos inferir que elas compreendiam a diferença de eletronegatividade entre os átomos constituintes da molécula, apesar de os terem identificado

incorretamente no modelo expresso da Figura 3c. Durante essa discussão, uma das integrantes do grupo (E1/G1) explicou que a representação estava errada, pois a carga parcial negativa deveria estar no átomo de oxigênio, "porque o oxigênio é mais eletronegativo que o carbono". Além disso, a integrante do grupo que havia feito o desenho (E2/G2) afirmou ter cometido um erro por ter feito rapidamente a representação e não ter se atentado para o engano.


Após as discussões sobre essas reformulações, a professora leu com a turma a parte 1 da atividade 3, que já havia sido proposta como um trabalho a ser iniciado em casa. O grupo 1 apresentou para esta atividade um modelo verbal (vide Figura 3d), a partir do qual é possível notar que as futuras professoras associaram o aquecimento global ao desequilíbrio entre a energia que entra na atmosfera terrestre e a que sai, ou seja, a um fenômeno que é consequência da energia que fica retida pelos gases estufa e, portanto, provocando um aquecimento maior na superfície terrestre. Com base na conclusão do grupo 1, a professora enfatizou na discussão a informação sobre as igualdades nas taxas de energia de entrada e saída da Terra, que também estava descrita na atividade e solicitou que eles se reunissem nos grupos novamente e discutissem. Em seguida, a professora concedeu um tempo para que os grupos buscassem uma explicação e, posteriormente, os questionou sobre como aquela conservação de energia seria restabelecida, conforme ilustrado no turno transcrito a seguir:

396- Professora: (...) no relato de vocês, em um determinado momento, por ter muito CO_2 , a quantidade ((de energia)) que entra não ia ser igual a que sai. E a minha pergunta, é:: por causa de uma questão de conservação da energia, a quantidade que entra tem que ser igual a que sai. O que vai acontecer nesse meio do caminho para a quantidade que entra ser igual à que sai ((estudante levanta a mão utilizando o recurso da plataforma))? Pode falar, E4/G1.

Ao tentar propor explicações para a retomada do estado de conservação de energia, E4/G1 afirmou que os oceanos têm a capacidade de equilibrar as taxas de entrada e saída de energia da atmosfera terrestre (vide Figura 4a). De fato, os oceanos promovem a chamada "circulação termohalina"⁵, a qual desempenha um papel crucial na distribuição de calor pelo planeta. Entretanto, o aquecimento global tem causado o aumento do fluxo de água doce para os oceanos devido ao derretimento de gelo nas regiões polares, alterando assim a densidade das águas e afetando a circulação termohalina (Campos, 2014).

Os oceanos também ajudam a atenuar a quantidade de CO_2 da atmosfera terrestre, pois, em condições normais, eles absorvem CO_2 e promovem a formação de carbonato de cálcio ($CaCO_3$), que é essencial para a calcificação de diversos organismos marinhos. Contudo, o aumento das concentrações de CO_2 na atmosfera já ocasionou uma diminuição de 30% no pH das águas oceânicas desde a Revolução Industrial. Essa acidificação ocorre porque a absorção do CO_2 leva à formação de ácido carbônico ($H_2CO_3^-$), que, por ser um ácido fraco, se dissocia rapidamente em íons hidrônio (H_3O^+) e bicarbonato (HCO_3^+), reduzindo o pH da água. Isto perturba o equilíbrio e reduz a quantidade de íons carbonato (CO_3^{2-}) disponíveis para a formação de $CaCO_3$, afetando também a capacidade dos

oceanos em absorver CO_2 . Tal dinâmica tem gerado consequências prejudiciais à vida marinha, incluindo a morte de corais, perda de biodiversidade e aumento do nível do mar (Artaxo et al., 2006; Campos, 2014; Hoegh-Guldberg et al., 2007).

Figura 4 – Esquema da elaboração de significados pelas futuras professoras durante a atividade de modelagem sobre efeito estufa e aquecimento global (continuação).

Durante essa discussão, a professora também solicitou que o outro grupo apresentasse suas explicações e depois retomou a discussão com toda a turma, revisando todas as atividades realizadas e as explicações que foram elaboradas pelos futuros professores. Ela também pediu que eles refletissem em casa e tentassem propor novas explicações para essa questão.

No início do quinto dia de desenvolvimento, a professora retomou a primeira parte da atividade 3 antes de iniciar a atividade seguinte. Ambos os apresentaram explicações semelhantes (vide argumentando que, devido ao eixo de inclinação do planeta Terra, o equilíbrio seria retomado no lado do planeta que não estivesse recebendo luz solar. Em outras palavras, nas áreas do globo onde fosse dia, haveria um desequilíbrio entre o fluxo de entrada e saída de radiação, enquanto à noite, quando não houvesse incidência de radiação solar, o equilíbrio seria restabelecido. No entanto, os futuros professores não se atentaram para o fato de que a Terra, por ter seu formato de geoide, não tem sua superfície iluminada de maneira uniforme ao longo do ano, o que resulta nas diferentes estações. Isto é, algumas áreas recebem luz solar por períodos mais longos (as regiões mais próximas à Linha do Equador), enquanto outras estão sujeitas a uma menor incidência de radiação (as zonas polares). Portanto, não é possível afirmar que haveria uma compensação de energia pensandose em ciclos de dias e noites (Mendonça & Danni-Oliveira, 2011).

Durante a discussão sobre essa atividade, um dos futuros professores da turma afirmou que não possuíam novas informações que lhes possibilitassem pensar em outras explicações. Dessa forma, a professora passou para a segunda parte da atividade 3, apresentando uma analogia como um recurso didático, com o intuito de facilitar o estabelecimento de inferências pelos futuros professores, a partir do processo de mapeamento (Mozzer & Justi, 2015, 2018).

Na dinâmica de apresentação da analogia, a professora foi descrevendo para os futuros professores apenas o domínio análogo (fluxo de água em uma pia), aquele que é mais familiar para eles. Após cada um dos grupos discutirem entre si as relações de similaridade que percebiam entre análogo e alvo (fluxo de energia no sistema terrestre), o grupo 1 apresentou o mapeamento para a turma (vide Tabela 1 e Figura 4c).

Foi possível observar que, quando as futuras professoras apresentaram as similaridades entre os domínios da analogia, elas deixaram de identificar as diferenças entre os domínios comparados.

ANÁLOGO	MAPEAMENTO	ALVO
Aquilo que entope o ralo da pia.	+	Concentração de CO ₂ na atmosfera terrestre.
A obstrução do raio aumenta o nível de água na pia, causando um desequilíbrio na taxa de água que entra e sai da pia.	←	Aumento na concentração de CO ₂ gera aumento na absorção de energia emitida pela Terra, causando um desequilíbrio momentâneo na taxa de energia que entra e sai da Terra.
O aumento da pressão d'água sobre o ralo faz com que aquilo de obstrui o ralo desça pelo encanamento, restabelecendo o equilíbrio entre a entrada e saída de água.	→	O aumento de energia que sai da atmosfera terrestre dissipa parte das moléculas de CO ₂ , restabelecendo o equilíbrio entre a entrada e saída de energia.

Tabela 1 – Mapeamento das relações de similaridade entre o fluxo de água em uma pia e o fluxo de energia no sistema terrestre.

Possivelmente, essa falta de diferenciação as tenha levado a sugerir que as moléculas de CO_2 seriam dissipadas para o espaço de modo a retornar a igualdade dos fluxos de energia de entrada e de saída no mapeamento feito por elas (vide destaque na Tabela 1).

É importante destacar que, após a apresentação do mapeamento pelos grupos, a professora perguntou se as futuras professoras acreditavam que parte das moléculas seriam dissipadas e uma das integrantes do grupo afirmou que apenas parte delas se dissiparia e, neste caso, o efeito estufa ainda estaria mantido.

Em seguida, com toda a turma, a professora revisitou mais uma vez as explicações sobre o processo de intensificação do efeito estufa que haviam sido estabelecidas como consensuais até aquele momento, por meio do mapeamento da analogia em pontos que os futuros professores não tinham dado a devida atenção. A seguir, trazemos um trecho desse diálogo, em que é possível notar que a professora desempenhou um papel fundamental no processo de identificação das relações de similaridade envolvidas na analogia, o que possibilitou aos futuros professores estabelecer inferências sobre o alvo (a de que o aumento da temperatura da Terra atua na regulação do fluxo de energia, como a pressão atua na regulação do fluxo de água na pia).

490- Professora: Mas em correspondência com aquela analogia, porque, olha só, eu tô tentando fazer o mapeamento com vocês. Lá, o aumento da

quantidade de água no ralo aumentou a pressão sobre o ralo, fluxo igualou de... água de entrada e água de saída. No caso da Terra, aumentou a temperatura. Como a E2/G2 disse, esse aumento da temperatura é correspondente ao aumento da água. O aumento do nível da água aumentou a pressão, e o aumento da temperatura na Terra? (...)

492- E2/G1: Vai aumentar também o fluxo de saída, né?! Acho que vai existir algum:: limite pra quantidade de energia que pode se manter aqui e depois esse aumento vai fazer com que o fluxo volte a ser o mesmo que:: de entrada e de saída.

Após esse processo tivemos evidências de elaboração de um modelo explicativo mais abrangente para o aquecimento global pelas futuras professoras, a partir da reformulação da resposta da parte 2 da atividade 3 (vide Figura 4d), enviada por elas à professora, após a discussão exposta acima. A resposta do grupo, expressa por escrito na folha de atividades, foi a seguinte:

"Os modelos elaborados nas atividades 1 e 2 não são capazes de explicar o aquecimento global de maneira completa. (...) Para complementar a explicação de ambos os modelos, de modo a contemplar o aquecimento global, é preciso fazer algumas considerações. Primeiro, compreendemos que um aumento da concentração de CO_2 de origem antropogênica, gera um aumento na absorção da radiação infravermelha que incide sobre a atmosfera, provocando um desequilíbrio térmico no sistema. (...) O aquecimento da Terra (que pode ser entendido aqui, como o aquecimento global) implica na emissão de mais radiação infravermelha incidindo novamente sobre a atmosfera. Portanto, é justamente esse processo de aquecimento da Terra que irá resultar no equilíbrio do sistema".

Nas interações descritas neste trecho, fica evidente que por meio da discussão ocorrida anteriormente, as futuras professoras conseguiram estabelecer relações mais coerentes entre os domínios alvo e análogo, devido à evolução do entendimento conceitual sobre o fenômeno do aquecimento global. Aliado a isso, as futuras professoras também foram capazes de reconhecer que, assim como os modelos, as analogias também possuem limitações na qual certas relações de similaridade entre propriedades, estrutura e/ou comportamentos do análogo e do alvo não se aplicam (Mozzer & Justi, 2015, 2018). As ideias coerentes do mapeamento realizado, estão ilustradas na Tabela 2.

Na última atividade da proposta, as futuras professoras foram capazes de considerar o aumento na concentração de CO₂ mais alarmante do que o aumento na concentração de vapor d'água, devido ao efeito da ação humana na intensificação das emissões de CO₂. Elas afirmaram que um aumento na concentração de CO₂ resulta no aumento dos níveis de vapor d'água na atmosfera, uma vez que o aquecimento do planeta leva a uma evaporação mais intensa da água em temperaturas elevadas. Elas também explicaram que, como o vapor d'água é um gás estufa condensável, diferentemente do CO₂, poderia precipitar na forma de chuva, regulando sua quantidade na atmosfera.

ANÁLOGO	MAPEAMENTO	ALVO
Aquilo que entope o ralo da pia.	1	Concentração de CO ₂ na atmosfera terrestre.
A obstrução do raio aumenta o nível de água na pia, causando um desequilíbrio na taxa de água que entra e sai da pia.	←	Aumento na concentração de CO ₂ gera aumento na absorção de energia emitida pela Terra, causando um desequilíbrio momentâneo na taxa de energia que entra e sai da Terra.
O aumento da pressão d'água sobre o ralo faz com que aquilo de obstrui o ralo desça pelo encanamento, restabelecendo o equilíbrio entre a entrada e saída de água.	†	O aumento na absorção de radiação infravermelha, resulta na emissão de uma maior quantidade de radiação infravermelha pela Terra, restabelecendo o equilíbrio entre as taxas de entrada e saída de energia da atmosfera.

Tabela 2 – Mapeamento do modelo verbal reformulado para o estabelecimento de similaridades entre o fluxo de água em uma pia e o fluxo de energia no sistema terrestre.

Dessa forma, e diante dos resultados apresentados é possível observar que durante todo o processo, houve uma evolução não linear (com avanços e retrocessos) na construção de significados sobre os conhecimentos científicos associados aos fenômenos pelas futuras professoras. Elas passaram por momentos sucessivos de descontinuação nessa elaboração de significados, como ao tentar explicar, por exemplo, o comportamento do CO_2 diante da radiação. Nesse contexto, foi necessário revisitar conceitos sobre o comportamento dos gases e as propriedades das moléculas, como polaridade, geometria e distribuição de carga. Essas discussões foram cruciais para a compreensão de que a proximidade entre as moléculas não é uma explicação plausível para a retenção de radiação, nem a absorção de radiação gera dipolos momentâneos em uma molécula apolar.

Entretanto, quando as futuras professoras compreenderam o processo de intensificação do efeito estufa, elas passaram a considerar que o aquecimento global é o deseguilíbrio das taxas de energia que entram e saem da atmosfera, em vez de reconhecerem, que o aumento na emissão de gases estufa, como o CO2, resulta em maior emissão de energia pela Terra (o aquecimento global), ou seja, o influencia. Em vista disso, posteriormente, a professora ressaltou a necessidade de se manter um equilíbrio entre as taxas de energia absorvida e emitida pela Terra. Como resultado, as futuras professoras elaboraram diferentes hipóteses para explicar como o sistema poderia restabelecer o equilíbrio diante do aumento da concentração de CO₂ na atmosfera terrestre. Contudo, centraram seus modelos explicativos na discrepância entre essas taxas de energia e não no efeito desta sobre o sistema (uma temperatura da superfície terrestre mais elevada). Numa etapa consecutiva. embora as futuras professoras tenham compreender o deseguilíbrio entre as taxas de absorção e emissão de energia pelo planeta (vide Tabela 2), elas ainda não haviam elaborado compreensões sobre o efeito desse deseguilíbrio. Novas discussões emergiram, sustentadas por informações e questionamentos que possibilitaram a revisão dessas ideias pelas futuras professoras, as quais possibilitaram que começassem a considerar que a Terra se aquece para ser capaz de alcançar um novo estado de equilíbrio (vide figura 4d).

Conclusões

Com base na análise do processo de elaboração de significados relacionados ao efeito estufa e ao aquecimento global, vivenciado por futuras professoras de Química e Biologia a partir da modelagem, é possível afirmar que elas se aproximaram de modelos explicativos mais coerentes com as noções científicas sobre esses dois fenômenos. Isso foi alcançado por meio das numerosas interações dialógicas que ocorreram na tentativa de validação de seus modelos, o que demonstra a importância do ciclo de modelagem delineado por Gilbert e Justi (2016), juntamente com os subsídios fornecidos no desenvolvimento da proposta didática, bem como, a mediação estabelecida pela professora durante todo o processo.

Assim sendo, o desenvolvimento da proposta demonstra que a complexidade, dinamicidade e criatividade são inerentes ao processo cíclico de modelagem. Isso evidencia que a aprendizagem de Ciências se dá por um processo gradual e não linear de elaboração de significados, no qual a construção de modelos e o raciocínio analógico desempenham um importante papel (Clement, 2008; Gilbert & Justi, 2016; Justi, 2009; Mozzer & Justi, 2018). Nesse sentido, as futuras professoras tiveram que propor, testar, avaliar e defender suas ideias, identificar erros, reformular modelos e, progressivamente, aprimorá-los, considerando uma diversidade de aspectos, para que elas alcançassem um modelo coerente com as explicações científicas sobre as entidades modeladas.

Além disso, ressalta-se que a abordagem investigada neste estudo, pode ter um impacto significativo na prática docente dessas futuras professoras e de seus pares, uma vez que a vivência de experiências formativas como essa pode contribuir para o desenvolvimento de repertórios de ensino centrados na criação de oportunidades de aprendizagem para seus futuros estudantes a partir de momentos coletivos de troca de ideias, questionamentos e avaliação. Isso, por sua vez, pode contribuir para despertar neles (estudantes e professores) a consciência crítica em relação às informações equivocadas, que apresentam explicações que se desviam das numerosas evidências científicas sobre a influência da atividade humana no aquecimento global (Lima, 2013), e minimizam a urgência de se pensar em soluções para a crise climática, que já apresenta impactos irreversíveis (IPCC, 2023). É essa consciência crítica que capacita tomadas de decisões sustentadas pelo conhecimento científico e que contribuem para a busca por uma sociedade mais justa socioambientalmente (Hodson, 2011).

Diante desse contexto, defendemos que é imprescindível que as disciplinas voltadas para a formação de professores, possuam caráter interdisciplinar com o objetivo de preparar professores de Ciências que sejam comprometidos no tratamento de questões socioambientais em suas salas de aula, de forma mais profunda e abrangente, evitando a negligência de evidências e conceitos científicos fundamentais para o entendimento e posicionamento crítico sobre os fenômenos ambientais e seus agravantes.

Por fim, este trabalho aponta para a possibilidade de novas pesquisas para a área de formação de professores, a partir: (i) da ampliação da proposta didática discutida neste trabalho para além do escopo do domínio conceitual, abarcando discussões nos âmbitos social, ambiental, ético e

político relacionados aos fenômenos; (ii) do estudo das oportunidades de aprendizagem de ensinar e aprender Ciências geradas por experiências formativas fundamentadas na modelagem para futuro(a)s professore(a)s.

Agradecimentos

Agradecemos o apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) e da Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Referências bibliográficas

Andrade, G. M. de P. C. (2018). O papel dos questionamentos da professora em um processo de ensino de química fundamentado na modelagem analógica [Dissertação] Mestrado em Educação. Universidade Federal de Ouro Preto.

Artaxo, P. et al. (2006). Efeitos climáticos de partículas de aerossóis biogênicos e emitidos em queimadas na Amazônia. *Revista Brasileira de Meteorologia*, 21(3a), 168–189.

Campos, E. J. D. (2014). O papel do oceano nas mudanças climáticas globais. *Revista USP*, 103, 55–66.

Carvalho, A. M. P. (2006). Uma metodologia de pesquisa para estudar os processos de ensino e aprendizagem em salas de aula. In: F. M. T. Santos & I. M. Greca (Eds.), *A pesquisa em Ensino de Ciências no Brasil e suas Metodologias* (pp. 13–48). Ijuí: Unijuí.

Casagrande, A., Silva Junior, P., & Mendonça, F. (2011). Mudanças climáticas e aquecimento global: controvérsias, incertezas e a divulgação científica. *Revista Brasileira de Climatologia*, 8, 30–44.

- Clement, J. J. (2008). *Creative Model Construction in Scientists and Students: The role of imagery, analogy and mental simulations*. Dordrecht: Springer.
- Cruz, F. R. et al (2014). Discussões sobre as mudanças climáticas globais: os alarmistas, os céticos e os modelos de previsão do clima. GeoTextos, 10(1), 243–258.
- Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. *International Journal of Science and Mathematics Education*, *2*, 115–130.
- Gilbert, J. K., & Justi, R. (2016). *Modelling-based Teaching in Science Education*. Springer International Publishing.

Gonçalves, M. B., Juliani, S. de F., & Santos, L. M. F. (2018). Abordagens do tema mudanças climáticas nas pesquisas em ensino de Ciências. *Educação: Teoria e Prática*, 28(59), 643–661.

Hodson, D. (2011). Building a Curriculum. In D. Hodson (Ed.), *Looking to the future* (pp. 71–107). Sense Publishers.

Hoegh-Guldberg, et al. (2007). Coral Reefs under Rapid Climate Change and Ocean Acidification. *SCIENCE*, *318*(5857), 1737–1742.

- IPCC. (2021). Climate Change 2021 The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896
- IPCC. (2023). Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35–115). https://doi.org/10.59327/IPCC/AR6-9789291691647
- Jacobi, P. R., et al. (2011). Mudanças climáticas globais: a resposta da educação. *Revista Brasileira de Educação*, 16(46), 135–269.
- Jiménez-Aleixandre, M. P. (2010). *10 ideas clave: competencias en argumentación y uso de pruebas* (M. P. Jiménez-Aleixandre, Ed.; 1st ed.). Graó.
- Junges, A. L., Santos, V. Y., & Massoni, N. T. (2018). Efeito estufa e aquecimento global: uma abordagem conceitual a partir da física para educação básica. *Experiências Em Ensino de Ciências*, 13(5), 126–151.
- Justi, R. (2009). Learning how to model in science classroom: key teacher's role in supporting the development of students' modelling skills. *Educación Química*, 20(1), 32–40.
- Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In: R. A. Duschl & R. E. Grandy (Eds.), *Teaching Scientific Inquiry: recommendations for research and implementation* (Duschl, R., Issue November, pp. 288–291). Taipei Sense Publisher.
- Lambert, J. L., Lindgren, J., & Bleicher, R. (2011). Assessing Elementary Science Methods Students' Understanding About Global Climate Change. *International Journal of Science Education*, *34*(8), 1167–1187.
- Lima, F. G. C. (2013). Educação Ambiental e Mudança Climática: convivendo em contextos de incerteza e complexidade. *Ambiente & Educação*, 18(1), 91–112.
- Lüdke, M., & André, M. E. D. A. (2013). Pesquisa em Educação: abordagens qualitativas. In M. Lüdke & M. E. D. A. André (Eds.), *Pesquisa em educação: abordagens qualitativas* (2nd ed.). E.P.U.
- Maia, P. F., & Justi, R. (2017). A influência dos conhecimentos e crenças dos professores na elaboração de atividades de ensino baseadas em modelagem. *X Congreso Internacional Sobre Investigación En Didáctica De Las Ciencias*, 2749–2753.
- Martins, D. et al. (2020). O Papel dos Modelos Computacionais e das Analogias na Aprendizagem do Processo de Interação Fármaco-Enzima no Ensino Fundamentado em Modelagem. Revista Brasileira de Pesquisa em Educação em Ciências, 823-854.
- Mendonça, F., & Danni-Oliveira, I. M. (2011). *Climatologia: noções básicas e climas do Brasil* (2nd ed.). Oficina de Textos.
- Mendonça, P. C. C., Claudio, D. S. O., & Franco, L. G. (2022). Funções epistêmicas de modelos no processo de ensino e aprendizagem em citogenética: uma análise no contexto da formação inicial de professores de Biologia. *Investigações Em Ensino de Ciências*, 27(1), 349–366.

- Mozzer, N. B., & Justi, R. (2015). "Nem tudo que reluz é ouro": Uma discussão sobre analogias e outras similaridades e recursos utilizados no ensino de Ciências. Revista Brasileira de Pesquisa em Educação em Ciências, 15(1), 123-147.
- Mozzer, N. B., & Justi, R. S. (2018). Modelagem analógica no ensino de ciências. *Investigações em Ensino de Ciências*, 23(1), 155-182.
- Paganini, P., Justi, R., & Mozzer, N. B. (2014). Mediadores na coconstrução do conhecimento de ciências em atividades de modelagem. *Ciência & Educação (Bauru)*, 20, 1019-1036.
- Putnam, R. T., & Bordo, H.(2000) What do new views of knowledge and thinking have to say about research on teacher learning?. *Educational researcher*, 29(1), 4-15.
- Schwarz, C. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. *Science Education*, *93*(4), 720–744.
- Tolentino, M., & Rocha-Filho, R. C. (1998). A Química no efeito estufa. *Química Nova Na Escola*, 8, 10–14.
- Xavier, M. E. R., & Kerr, A. S. (2004). A análise do efeito estufa em textos paradidáticos e periódicos jornalísticos. *Caderno Brasileiro de Ensino de Física*, 21(3), 325–349.